Hypervolume-Based Search for Test Case Prioritization
نویسندگان
چکیده
Test case prioritization (TCP) is aimed at finding an ideal ordering for executing the available test cases to reveal faults earlier. To solve this problem greedy algorithms and meta-heuristics have been widely investigated, but in most cases there is no statistically significant difference between them in terms of effectiveness. The fitness function used to guide meta-heuristics condenses the cumulative coverage scores achieved by a test case ordering using the Area Under Curve (AUC) metric. In this paper we notice that the AUC metric represents a simplified version of the hypervolume metric used in many objective optimization and we propose HGA, a Hypervolume-based Genetic Algorithm, to solve the TCP problem when using multiple test criteria. The results shows that HGA is more cost-effective than the additional greedy algorithm on large systems and on average requires 36% of the execution time required by the additional greedy algorithm.
منابع مشابه
Input-based adaptive randomized test case prioritization: A local beam search approach
Test case prioritization assigns the execution priorities of the test cases in a given test suite. Many existing test case prioritization techniques assume the fullfledged availability of code coverage data, fault history, or test specification, which are seldom well-maintained in realworld software development projects. This paper proposes a novel family of input-based local-beam-search adapti...
متن کاملRobustness in Hypervolume-based Multiobjective Search
The use of quality indicators within the search has become a popular approach in the field of evolutionary multiobjective optimization. It relies on the concept to transform the original multiobjective problem into a set problem that involves a single objective function only, namely a quality indicator, reflecting the quality of a Pareto set approximation. Especially the hypervolume indicator h...
متن کاملAnalyzing Hypervolume Indicator Based Algorithms
Goals: understand why hypervolume-based search is that successful understand basic properties of hypervolume indicator Approach: rigorous running time analyses of a hypervolume-based MOEA for (i) approaching the Pareto front (ii) approximating large Pareto fronts (unary) hypervolume indicator (A) = hypervolume/area of dominated part of search space between front A and reference point Pareto-dom...
متن کاملImproving Test Efficiency through Prioritization Based On Testing Dependency
During the various iterations of software development, test case prioritization generally schedules test cases in order to increase test efficiency as soon as possible without reducing the scale of the test. It is noted that currently, many prioritization techniques are usually based on the assumption that the test cases are independent so as to reduce testing effort. However in the actual test...
متن کاملHypervolume-Based Search for Multiobjective Optimization: Theory and Methods
xi Zusammenfassung xiii Statement of Contributions xv Acknowledgments xvii List of Symbols and Abbreviations xvii Introduction . Introductory Example . . . . . . . . . . . . . . . . . . . . . . . . .. Multiobjective Problems . . . . . . . . . . . . . . . . . . . .. Selecting the Best Solutions . . . . . . . . . . . . . . . . . .. The Hypervolume Indicator . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015